An Overview of Multilinear Algebra and Tensor Decompositions

ARCC Tensor Decomposition Workshop

Carla D. Moravitz Martin
Center for Applied Mathematics
Cornell University

July 19, 2004

Outline

- Representing Tensors
- Tensor Rank Concepts
- Algorithms and SVD Generalizations

Representing Tensors (a.k.a. multiway arrays)

Order

• Second-order tensor $A = (a_{ij}) \in \mathbb{R}^{n_1 \times n_2}$

• Third-order tensor $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n_1 \times n_2 \times n_3}$

• p^{th} -order tensor $\mathcal{A} = (a_{i_1 i_2 ... i_p}) \in \mathbb{R}^{n_1 \times \cdots \times n_p}$

Some Relations to Linear Algebra

• Tensors as matrices

Tensors as vectors

• Norms, inner products, outer products

Turning Tensors into Matrices

Three ways to cut a "cube":

1. Left-right

2. Front-back

3. Top-bottom

Unfolding Matrices*

$$A_{(1)} = \begin{bmatrix} a_{111} & a_{112} & a_{121} \\ a_{211} & a_{212} & a_{221} \end{bmatrix} \begin{bmatrix} a_{122} & a_{122} \\ a_{222} & a_{222} \end{bmatrix}$$
 "sides"

$$A_{(2)} = \begin{bmatrix} a_{111} & a_{211} \\ a_{121} & a_{221} \end{bmatrix} \begin{bmatrix} a_{112} & a_{212} \\ a_{122} & a_{222} \end{bmatrix}$$
 "f

"front-back" [transposed]

$$A_{(3)} = \begin{bmatrix} a_{111} & a_{121} & a_{211} \\ a_{112} & a_{122} & a_{212} \end{bmatrix} \begin{bmatrix} a_{221} & a_{222} \\ a_{222} \end{bmatrix}$$

"top-bottom" [transposed]

^{*}De Lathauwer, De Moor, Vandewalle (2000)

The vec and reshape Operators

$$z \in \mathbb{R}^{mn} \Rightarrow \mathtt{reshape}(z,m,n) \in \mathbb{R}^{m imes n}$$

Example: m = 3, n = 5

reshape
$$(z,3,5)$$
 =
$$\begin{bmatrix} z_1 & z_4 & z_7 & z_{10} & z_{13} \\ z_2 & z_5 & z_8 & z_{11} & z_{14} \\ z_3 & z_6 & z_9 & z_{12} & z_{15} \end{bmatrix}$$

$$Z \in \mathbb{R}^{m imes n} \Rightarrow ext{vec}(Z) = ext{reshape}(Z, mn, 1) egin{bmatrix} Z(:, 1) \ dots \ Z(:, n) \end{bmatrix} \in \mathbb{R}^{mn}$$

Turning Tensors into Vectors

$$\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3} \Rightarrow \operatorname{vec}(\mathcal{A}) \in \mathbb{R}^{n_1 n_2 n_3}$$

Example: For n=2,

$$\operatorname{vec}(\mathcal{A}) = \begin{bmatrix} a_{111} \\ a_{211} \\ a_{121} \\ a_{221} \\ a_{112} \\ a_{212} \\ a_{122} \\ a_{222} \end{bmatrix}$$

Unfoldings in Matlab

The s-th unfolding matrix of an order-p tensor can be expressed in terms of vec and reshape:

Example:

"
$$A_{(s)} = \text{reshape}(\text{reshape}(\text{vec}(\mathcal{A}), n^{p-s}, n^s)^T, n, n^{p-1})$$
"

(can be adjusted for unequal dimensions)

Example: $n_1 \times n_2 \times n_3$ third-order tensor:

"
$$A_{(2)} = \text{reshape}(\text{reshape}(\text{vec}(A), n_1, n_2n_3)^T, n_2, n_3n_1)$$
"

Caution about notation

The explicit combination of vec and reshape in

$$\text{``}A_{(s)} = \text{reshape}(\text{reshape}(\text{vec}(\mathcal{A}), n^{p-s}, n^s)^T, n, n^{p-1}) \text{``}$$

depends on how the unfoldings are defined.

Example: Using DDV* unfoldings,

$$\operatorname{vec}(\mathcal{A}) = \begin{bmatrix} a_{111} \\ a_{211} \\ a_{121} \\ a_{221} \\ a_{112} \\ a_{212} \\ a_{122} \\ a_{122} \\ a_{222} \end{bmatrix} \xrightarrow{permutation} \begin{bmatrix} a_{111} \\ a_{112} \\ a_{121} \\ a_{211} \\ a_{212} \\ a_{221} \\ a_{222} \end{bmatrix}$$

^{*}De Lathauwer, De Moor, Vandewalle (2000)

Subtensors in Matlab

If

then

$$A(:,:,1) = \begin{bmatrix} a_{111} & a_{121} \\ a_{211} & a_{221} \end{bmatrix}.$$

However,

$$A(1,:,:) \neq \begin{bmatrix} a_{111} & a_{112} \\ a_{121} & a_{122} \end{bmatrix}$$

but rather the $1 \times 2 \times 2$ tensor: $\begin{bmatrix} a_{111} & a_{121} \end{bmatrix} \begin{bmatrix} a_{112} & a_{122} \end{bmatrix}$

Block Representations

A matrix of scalars, $A = (a_{ij})$, can be regarded as a "matrix with matrix entries" (block matrix)

A tensor of scalars, $\mathcal{A}=(a_{i_{n_1}...i_{n_p}})$, can be regarded as a "matrix with tensor entries"

Example: Order-5 tensor:

$$\begin{bmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} \end{bmatrix}$$

"second-order with third-order entries"

Norms and Inner Products

If $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ then the *inner product* is

$$<\mathcal{A},\mathcal{B}> = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \sum_{k=1}^{n_3} a_{ijk} \cdot b_{ijk}$$

= $\operatorname{vec}(\mathcal{A})^T \cdot \operatorname{vec}(\mathcal{B})$

A Frobenius norm, $\|A\|$, is

$$\|\mathcal{A}\| = \|\mathcal{A}\|_F = \sqrt{\langle \mathcal{A}, \mathcal{A} \rangle}$$

Other norms?

Outer Product and Rank-1 Tensors

If $x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}$ then the *outer product*, yx^T , is a rank-1 matrix.

Note

$$\text{vec}(yx^T) \Leftrightarrow x \otimes y$$

More generally, if x, y, z are vectors,

$$x \otimes y \otimes z$$

is a rank-1 tensor.

Sums of Rank-One Matrices

If
$$A = U\Sigma V^T$$
, $U = \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix}, V = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$, then

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} u_i v_j^T$$

that is,

$$\operatorname{vec}(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}(v_{j} \otimes u_{i})$$
$$= (V \otimes U) \cdot \operatorname{vec}(\Sigma)$$

Sums of Rank-One Tensors

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sigma_{ijk}(w_k \otimes v_j \otimes u_i)$$
$$= (W \otimes V \otimes U) \cdot \operatorname{vec}(\Sigma)$$

where

$$U = \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix}$$

$$V = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$

$$W = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix}$$

Repeated Change of Basis

If

$$\operatorname{vec}(\mathcal{A}) = \sum_{i} \sum_{j} \sum_{k} b_{ijk} (w_k \otimes v_j \otimes u_i)$$

$$\operatorname{vec}(\mathcal{B}) = \sum_{i} \sum_{j} \sum_{k} c_{ijk} (\hat{w}_{k} \otimes \hat{v}_{j} \otimes \hat{u}_{i})$$

Then

$$\operatorname{vec}(\mathcal{A}) = \sum_{i} \sum_{j} \sum_{k} c_{ijk} (W \hat{w}_{k} \otimes V \hat{v}_{j} \otimes U \hat{u}_{i})$$
$$= (W \hat{W} \otimes V \hat{V} \otimes U \hat{U}) \cdot \operatorname{vec}(\mathcal{C})$$

Connections between the unfoldings of ${\mathcal A}$ and ${\mathcal D}$

$$\operatorname{vec}(\mathcal{A}) = (W \otimes V \otimes U) \cdot \operatorname{vec}(\Sigma)$$

$$\updownarrow$$

$$A_{(1)} = U \Sigma_{(1)} (V \otimes W)^{T}$$

$$A_{(2)} = V \Sigma_{(2)} (W \otimes U)^{T}$$

$$A_{(3)} = W \Sigma_{(3)} (U \otimes V)^{T}$$

n-mode Products

Let $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$

		matrix × matrix [unfolding]	matrix × vector [vec]
$B_1 \in \mathbb{R}^{q \times m}$	$ \begin{array}{c c} "A \times_1 B_1" \\ (q \times n \times p) \end{array} $	$B_1 \cdot A_{(1)}$	$(I\otimes B_1)\cdot ext{vec}(A_{(1)})$
$B_2 \in \mathbb{R}^{q \times n}$	$ \begin{array}{c c} "A \times_2 B_2" \\ (m \times q \times p) \end{array} $	$B_2 \cdot A_{(2)}$	$(I\otimes B_2)\cdot \mathtt{vec}(A_{(2)})$
$B_3 \in \mathbb{R}^{q \times p}$	$"A \times_3 B_3"$ $(m \times n \times q)$	$B_3 \cdot A_{(3)}$	$(I\otimes B_3)\cdot \mathrm{vec}(A_{(3)})$

Tensor Rank Concepts

General Tensor Rank

Tensor rank of $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is the minimum number of rank-1 tensors that sum to A in linear combination.

If a tensor ${\cal A}$ has a minimal representation as:

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} \sigma_{ijk}(w_k \otimes v_j \otimes u_i)$$

then $rank(A) = r_1 r_2 r_3$

Why is Tensor Rank Important?

- Enables data compression
- Identifies dependencies in data

Applications, multilinear algebra theory, and computational realities all have "something to say" about the tensor rank issue.

Eight Facts about Tensor Ranks

- 1. Minimum tensor representation not necessarily orthogonal
- 2. Different orthogonality requirements result in different minimal representations (Kolda, 2001)
- 3. Ranks in different dimensions not always equal (De Lathauwer, De Moor, Vandewalle, 2000)
- 4. Tensors can't always be "diagonalized"

Eight Facts about Tensor Ranks (continued)

- 5. Maximum tensor rank unknown in general
- 6. No known method to compute the "minimum" tensor representation
- 7. k successive rank-1 approximations to tensors do not necessarily result in the best rank-k approximation (Zhang and Golub, 2001; Kolda, 2001,2003)
- 8. Set of rank-deficient tensors has positive volume (Kruskal, 1989)

Rank Analogy with Matrices

$\underline{\mathsf{Matrices}\ A \in \mathbb{R}^{n \times n}}$

$$\operatorname{vec}(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}(v_j \otimes u_i)$$

[orthogonal decomposition]

$$\operatorname{\mathtt{vec}}(A) = \sum_{i=1}^r \sigma_i(v_i \otimes u_i)$$

where rank(A) = r

TRUE

Tensors $A \in \mathbb{R}^{n \times n \times n}$

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sigma_{ijk}(w_k \otimes v_j \otimes u_i)$$

[orthogonal decomposition]

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^r \ \sigma_i(w_i \otimes v_i \otimes u_i)$$

where rank(A) = r

FALSE (most of the time)

Notions of Orthogonality (Kolda, 2001)

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{n} \sigma_i(w_i \otimes v_i \otimes u_i)$$

- 1. Complete Orthogonal Decomposition: for $i,j=1,\ldots,n$ $u_i\perp u_j$ and $v_i\perp v_j$ and $w_i\perp w_j$
- 2. Strong Orthogonal Decomposition: for i, j = 1, ..., n

$$u_i \perp u_j$$
 or $u_i = \pm u_j$
 $v_i \perp v_j$ or $v_i = \pm v_j$
 $w_i \perp w_j$ or $w_i = \pm w_j$

3. Orthogonal Decomposition: for i, j = 1, ..., n $u_i \perp u_j$ or $v_i \perp v_j$ or $w_i \perp w_j$

Orthogonality and Rank *

If the rank-1 tensors $(w_i \otimes v_i \otimes u_i)$ are $\left\{ egin{array}{c} \textit{orthogonal} \\ \textit{strongly orthogonal} \end{array} \right\}$ in

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{r} \sigma_i(w_i \otimes v_i \otimes u_i)$$

and r is minimal, then the $\begin{cases} orthogonal \\ strong\ orthogonal \end{cases}$ rank of $\mathcal A$ is r.

^{*}Kolda, 2001

Orthogonality and Rank (continued)

If the rank-1 tensors $(w_k \otimes v_j \otimes u_i)$ are completely orthogonal in

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sigma_{ijk}(w_k \otimes v_j \otimes u_i)$$

and r is minimal, then the *combinatorial orthogonal rank* of $\mathcal A$ is r.

More Rank Concepts*

For an order-p tensor, compute rank of each unfolding matrix:

$$n$$
-rank of $\mathcal{A} = \operatorname{rank}(A_{(n)})$

Relationship to tensor rank:

$$n$$
-rank \leq rank

*De Lathauwer, De Moor, Vandewalle, 2000

Matrix Rank vs. Tensor Ranks

- *Matrices*: rank, orthogonal rank, strong orthogonal rank, and combinatorial rank are all equal
- Tensors: different ranks are not necessarily equal and the associated decompositions are not unique

Matrix Rank vs. Tensor Ranks (continued)

- \bullet *Matrices*: the n-ranks correspond to the column and row rank of the matrix and hence are equal
- Tensors: the different n-ranks are not necessarily equal and even if they are, they do not necessarily equal the tensor rank

Diagonalizeable Tensors

Suppose A can be written as a *completely* orthogonal decomposition:

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{n} \sigma_i(w_i \otimes v_i \otimes u_i)$$

Then

- All ranks with different orthogonality constraints are equal
- ullet k successive rank-1 approximations compute the best rank-k approximation (Zhang and Golub, 2001)

Other Special Structures to Explore

Supersymmetric tensors

• $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, where $n_1, n_2 >> n_3$ (thin tensors)

• Bandedness?

• Toeplitz?

• Block algorithms?

Thinking About Rank

- How does knowledge of rank help in applications?
- How do the different notions of rank and orthogonality help explain correlations in data?
- Can we overcome the rank problem by instead working to "compress" entries of a tensor?

Numerical Rank

Tricky even in matrix case!

$$\operatorname{vec}(A) = \sum_{i=1}^{r} \sigma_i(v_i \otimes u_i)$$

where

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r >> \sigma_{r+1} \ge \cdots \ge \sigma_n$$

How to determine r?

Numerical rank problems with tensors?

Algorithms and SVD Generalizations

Solution Paradigm: Component-wise Linearization

Problem:

$$\min_{u,v,w} \|a - w \otimes v \otimes u\|_F^2$$

Repeat:

Hold w,v constant, solve for u Hold w,u constant, solve for v Hold v,u constant, solve for w

"Alternating Least Squares"

Best Rank-1 Idea

Problem:

$$\min_{u,v,w}\|a-\sigma(w\otimes v\otimes u)\|_F^2\quad\text{s.t.}\quad\|u\|=\|v\|=\|w\|=1$$

$$\lim_{u,v,w} a^T(w\otimes v\otimes u)\quad\text{s.t.}\quad\|u\|=\|v\|=\|w\|=1$$

Lagrange Multipliers:

$$\sigma u = A_{(1)}(v \otimes w)$$

$$\sigma v = A_{(2)}(u \otimes w)$$

$$\sigma w = A_{(3)}(u \otimes v)$$

$$\sigma = a^{T}(w \otimes v \otimes u)$$

Higher-Order Power Method *

Alternating Least Squares:

Solve for σ, u given v, w and iterate:

$$\tilde{u} \leftarrow A_{(1)}(v \otimes w)$$

$$\sigma \leftarrow ||\tilde{u}||$$

$$u \leftarrow \frac{\tilde{u}}{\sigma}$$

^{*}De Lathauwer, De Moor, Vandewalle, 2000

Generalized Rayleigh Quotient Iteration *

Recall the Lagrange equations:

$$\sigma u = A_{(1)}(v \otimes w)$$

$$\sigma v = A_{(2)}(u \otimes w)$$

$$\sigma w = A_{(3)}(u \otimes v)$$

$$GRQ \equiv \sigma = a^{T}(w \otimes v \otimes u)$$

Linearize using Newton's Method and iterate

^{*}Zhang and Golub, 2001

Successive Rank-1 Approximations

$$\frac{\text{Step } k}{r_k \leftarrow a - \sum_{i=1}^k \sigma_i(w_i \otimes v_i \otimes u_i)}$$

Solve

$$\max_{u,v,w} r_k^T(w \otimes v \otimes u)$$

subject to required orthogonality constraints

Note: Only computes minimal decomposition if tensor is "diagonalizeable" *

*Zhang and Golub, 2001; Kolda, 2001

Existing Algorithms

• CANDECOMP-PARAFAC*

• TUCKER[†]

Implemented in N-way Toolbox in Matlab ‡

^{*}Carroll and Chang, 1970; Harshman, 1970

[†]Tucker, 1966

[‡]Andersson and Bro, 2000

CANDECOMP-PARAFAC

Finds general decompositions of the form

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{n} (w_i \otimes v_i \otimes u_i)$$

using ALS on unfolding matrices.

Example:

If V,W fixed, then U is found using LS, where

$$A_{(1)} = U\tilde{I}(V \otimes W)^T$$
 and $\tilde{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ for $n = 2$

TUCKER

Finds decompositions of the form

$$\operatorname{vec}(\mathcal{A}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sigma_{ijk}(w_k \otimes v_j \otimes u_i)$$

using ALS on unfolding matrices (SVD solution at each step)

SVD Generalization (TUCKER3)*

Orthogonal representation involves computing SVDs of the unfolding matrices of A:

$$A_{(1)} = UD_1G_1^T$$
 $\Sigma_{(1)} = D_1G_1^T(V \otimes W)$
 $A_{(2)} = VD_2G_2^T$ $\Sigma_{(2)} = D_2G_2^T(W \otimes U)$
 $A_{(3)} = WD_3G_3^T$ $\Sigma_{(3)} = D_3G_3^T(U \otimes V)$

Then

$$A_{(1)} = U\Sigma_{(1)}(V \otimes W)^{T}$$

$$A_{(2)} = V\Sigma_{(2)}(W \otimes U)^{T}$$

$$A_{(3)} = W\Sigma_{(3)}(U \otimes V)^{T}$$

^{*}De Lathauwer, De Moor, Vandewalle (2000)

SVD Generalization*

Matrices $A \in \mathbb{R}^{n \times n}$

$$A = U\Sigma V^T$$

$$\Sigma = \mathtt{diag}(\sigma_1, \ldots, \sigma_n)$$

[row/colum vectors mutually orthogonal]

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$

Tensors
$$\mathcal{A} \in \mathbb{R}^{n \times n \times n}$$

$$A_{(1)} = U \Sigma_{(1)} (V \otimes W)^{T}$$

$$A_{(2)} = V \Sigma_{(2)} (W \otimes U)^{T}$$

$$A_{(3)} = W \Sigma_{(3)} (U \otimes V)^{T}$$

Cuts of \varSigma mutually orthogonal

$$\| \Sigma(1,:,:) \|_{F} \ge \cdots \ge \| \Sigma(n,:,:) \|_{F} \ge 0$$

$$\| \Sigma(:,1,:) \|_{F} \ge \cdots \ge \| \Sigma(:,n,:) \|_{F} \ge 0$$

$$\| \Sigma(:,:,1) \|_{F} \ge \cdots \ge \| \Sigma(:,:,n) \|_{F} \ge 0$$

^{*}De Lathauwer, De Moor, Vandewalle (2000)

Conclusions

- Representing tensors with linear algebra tools key!
- How do applications need the different tensor ranks?
- Applications need to drive the algorithms